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Drug resistance, exemplified in Escherichia coli (E. coli), is a global health threat. Traditional drug-resistance testing 

takes a long time, has low through-put, and is only possible with bacteria that can be cultivated in labs.

• Machine learning (ML) enables new possibilities in predicting drug resistance more efficiently.

• Previous ML-based studies have shown that single nucleotide polymorphisms (SNPs) and gene presence-absence 

tables are good predictors for drug resistance.

• Advancements in DNA sequencing enable us to create a comprehensive pan-genome assembly, also called pan-

genome alignments, which contain both gene presence-absence and SNP information.

In this project, we investigate the efficacies of deep learning architectures convolutional neural networks (CNN) and 

variational auto-encoder (VAE) in drug resistance prediction in E. coli for amoxicillin (AMC).

CNNs are a type of neural network that excel at image recognition. They use filters that slide 

across the input, identifying patterns like edges and shapes.

Auto-encoders are a type of neural network that learn to compress data into a latent space, 

which is then used as inputs to an XGB Classifier, an ensemble-based classifier.
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• Investigate the efficacy of the VAE and CNN by increasing the dataset.

• Explore other architectures such as the multi-layer perceptron and Vision Transformers.

• Compare the performance of color maps and DNA sequences using techniques in natural 

language processing.

• Multi-label binary classification of multiple drugs.
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• Model evaluation reveals that reduced pan-genome models have better performance than 

gene presence-absence models, which may indicate that the reduced pan-genome dataset 

is a better predictor for drug resistance.

• VAE consistently outperformed CNN across all evaluated metrics.

• Both CNN and VAE have better training and testing performances with the reduced pan-

genome dataset than the gene presence-absence dataset.
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Key Points

• Using convolutional neural networks (CNN) and 

variational auto-encoder (VAE) in the task of drug 

resistance.

• Aligning the pangenome allows us to use both 

single nucleotide polymorphisms (SNPs) and gene 

presence-absence in our training.

• Using visual colormaps to densely embed DNA 

sequence data as input for CNN and VAE.

• Reducing pangenome size with minor allele 

frequency.
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