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Introduction

Key Points

Drug resistance, exemplified in Escherichia coli (E. coli), 1s a global health threat. Traditional drug-resistance testing Using convolutional neural networks (CNN) and

takes a long time, has low through-put, and is only possible with bacteria that can be cultivated in labs. variational auto-encoder (VAE) in the task of drug

» Machine learning (ML) enables new possibilities in predicting drug resistance more efficiently. resistance.

» Previous ML-based studies have shown that single nucleotide polymorphisms (SNPs) and gene presence-absence Aligning the pangenome allows us to use both
tables are good predictors for drug resistance. single nucleotide polymorphisms (SNPs) and gene

. . _ presence-absence in our training.

» Advancements in DNA sequencing enable us to create a comprehensive pan-genome assembly, also called pan- Using visual colormaps to densely embed DNA
genome alignments, which contain both gene presence-absence and SNP information. sequence data as input for CNN and VAE.

In this project, we investigate the efficacies of deep learning architectures convolutional neural networks (CNN) and Reducing pangenome size with minor allele

variational auto-encoder (VAE) In drug resistance prediction in E. coli for amoxicillin (AMC). frequency.
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Architectures

CNNs are a type of neural network that excel at image recognition. They use filters that slide
across the input, identifying patterns like edges and shapes.

Auto-encoders are a type of neural network that learn to compress data into a latent space,
which Is then used as inputs to an XGB Classifier, an ensemble-based classifier.

Conclusion

* Model evaluation reveals that reduced pan-genome models have better performance than
gene presence-absence models, which may indicate that the reduced pan-genome dataset
IS a better predictor for drug resistance.

* VAE consistently outperformed CNN across all evaluated metrics.

Comﬁzlyueﬁronal | l » Both CNN and VAE have better training and testing performances with the reduced pan-
v g genome dataset than the gene presence-absence dataset.
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Explore other architectures such as the multi-layer perceptron and Vision Transformers.
Compare the performance of color maps and DNA sequences using techniques in natural

Dataset language processing.

Multi-label binary classification of multiple drugs.

Investigate the efficacy of the VAE and CNN by increasing the dataset.

Moradigaravand Dataset Count, Percentage
n=501 subset
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